Study on the Effect of Contrast Agent on Biofilms and Their Visualization in Porous Substrate Using X-ray μCT

Author:

Shastry Abhishek,Villanueva Xabier,Steenackers Hans,Cnudde VeerleORCID,Robles EricORCID,Boone Matthieu N.ORCID

Abstract

Investigation of biofilms and visualization using non-destructive imaging techniques like X-ray μCT has recently gained interest. Biofilms are congregations of microorganisms that attach to surfaces and comprise of microbial cells embedded in extracellular polymeric substances (EPS). They are ubiquitous entities that are commonly found in any non-sterile setting and have direct implications on human health. Methods to visualize them in-situ are highly needed to understand their behaviour (attachment and detachment) inside a substrate. Contrast-enhanced X-ray μCT is a 3D imaging technique that is capable of visualising objects that have very low attenuation contrast. The use of contrast agents in X-ray μCT has been an evolving process, however, the possible toxic effect of these chemical compounds against biofilms has not been studied in detail. In this study, we focus on the toxic effect of contrast agents and study the diffusion and drainage of contrast agents in biofilms. We propose using water-soluble potassium bromide (KBr) as a suitable contrast agent for enhancement of the attenuation coefficient of a monoculture of Pseudomonas fluorescens biofilms inside a porous substrate. At the given concentration, KBr proved to be less bactericidal compared to other commonly used contrast agents and at 5% w/v concentration we were able to clearly distinguish between the biofilm and the porous substrate.

Funder

Horizon 2020

Bijzonder Onderzoeksfonds UGent

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3