A Multi-Layer Perceptron Network for Perfusion Parameter Estimation in DCE-MRI Studies of the Healthy Kidney

Author:

Klepaczko Artur,Strzelecki MichałORCID,Kociołek MarcinORCID,Eikefjord Eli,Lundervold Arvid

Abstract

Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an imaging technique which helps in visualizing and quantifying perfusion—one of the most important indicators of an organ’s state. This paper focuses on perfusion and filtration in the kidney, whose performance directly influences versatile functions of the body. In clinical practice, kidney function is assessed by measuring glomerular filtration rate (GFR). Estimating GFR based on DCE-MRI data requires the application of an organ-specific pharmacokinetic (PK) model. However, determination of the model parameters, and thus the characterization of GFR, is sensitive to determination of the arterial input function (AIF) and the initial choice of parameter values. Methods: This paper proposes a multi-layer perceptron network for PK model parameter determination, in order to overcome the limitations of the traditional model’s optimization techniques based on non-linear least-squares curve-fitting. As a reference method, we applied the trust-region reflective algorithm to numerically optimize the model. The effectiveness of the proposed approach was tested for 20 data sets, collected for 10 healthy volunteers whose image-derived GFR scores were compared with ground-truth blood test values. Results: The achieved mean difference between the image-derived and ground-truth GFR values was 2.35 mL/min/1.73 m2, which is comparable to the result obtained for the reference estimation method (−5.80 mL/min/1.73 m2). Conclusions: Neural networks are a feasible alternative to the least-squares curve-fitting algorithm, ensuring agreement with ground-truth measurements at a comparable level. The advantages of using a neural network are twofold. Firstly, it can estimate a GFR value without the need to determine the AIF for each individual patient. Secondly, a reliable estimate can be obtained, without the need to manually set up either the initial parameter values or the constraints thereof.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3