Effect of the Directional Components of Earthquakes on the Seismic Behavior of an Unanchored Steel Tank

Author:

Zhang Rulin,Chu Shili,Sun Kailai,Zhang Zhongtao,Wang Huaifeng

Abstract

This paper investigates the effect of the multi-directional components of ground motion on an unanchored steel storage tank. Both the liquid sloshing effect and contact behavior between the foundation and tank are included in the study. A three-dimensional model for a foundation–structure–liquid system is numerically simulated using the finite element method. The Lagrange fluid finite element method (FEM) in ANSYS is used to consider the liquid–solid interaction. In the liquid–structure–foundation interaction model, the contact and target elements are adapted to simulate the nonlinear uplift and slip effects between the tank and the foundation. Three earthquake ground motions are selected for evaluating the seismic behavior of the tank. Comparisons are made on the horizontal displacement, “elephant-foot” deformation, stress, base shear and moment, sloshing of the liquid, uplift, as well as slip behavior under the application of the unidirectional, bi-directional and tri-directional components. Under the selected ground motions, the horizontal bi-directional seismic component has great influence on the liquid sloshing in the tank studied in this paper. The vertical seismic component produces high compressive axial stress, and it also makes the uplift and slide of the tank bottom increase significantly. The applicability of this conclusion should be carefully considered when applied to other types of ground motion inputs.

Funder

Shandong Provincial Natural Science Foundation

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference19 articles.

1. Equivalent linear stochastic seismic analysis of cylindrical base-isolated liquid storage tanks

2. Tank damage during the may 1983 coalinga earthquake

3. Dynamic analysis and seismic performance evaluation of above-ground liquid-containing tanks

4. Seismic response analysis of transmission tower-line system under multi-component ground motion excitations;Tian;J. Civ. Environ. Eng.,2013

5. The research of multi-dimensional seismic responses of large span asymmetric spatial structure;Zhang;Earthq. Eng. Eng. Dyn.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3