Effects of Biochar and Clinoptilolite on Composition and Gaseous Emissions during the Storage of Separated Liquid Fraction of Pig Slurry

Author:

Pereira José L. S.ORCID,Figueiredo Vitor,Pinto António F. M. A.,Silva Maria E. F.,Brás Isabel,Perdigão Adelaide,Wessel Dulcineia F.

Abstract

The storage of animal manure is a major source of gaseous emissions. The aim of this study was to evaluate the effects of biochar and clinoptilolite on the composition and gaseous emissions during the storage of separated liquid fraction of pig slurry. The experiment was carried out using containers with 6 L of pig slurry each. The additives biochar and clinoptilolite were added alone and mixed to the pig slurry at a rate of 2.5% each, in a total of four treatments with three replicates including the control. Gaseous emissions were monitored by a photoacoustic multigas monitor, and slurry samples were collected at 0 and 85 days and their composition assessed. Results showed that the addition of biochar could modify the physicochemical properties of the slurry. The addition of biochar did not reduce the E. coli during the experiment while clinoptilolite decreased its prevalence. The addition of biochar or clinoptilolite reduced significantly the NH3 emission during the storage of slurry, but no advantages were gained with their combination. The addition of biochar significantly reduced the CO2 and CH4 emissions relative to clinoptilolite, however N2O emissions and global warming potential did not differ among the additives. We conclude that the biochar and clinoptilolite are recommended as a mitigation measure to reduce gaseous emissions and preserve the fertiliser value at slurry storage.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Animal Manure Recycling: Treatment and Management;Sommer,2013

2. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories,2019

3. Meta-analysis of greenhouse gas and ammonia emissions from dairy manure composting

4. Review: Ammonia emissions from dairy farms and beef feedlots

5. Key factors driving ammonia emissions from a pig house slurry pit

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3