Abstract
The combination of nano-metal and wood to prepare copper-coated wood-based composite materials has important research value and practical significance for improving the function of wood, expanding the application field of wood, and adding added value. In this paper, 31-year-old wood (Pinus sylvestris L. var. mongholica Litv) veneer was taken as the research object. The wood veneer was pretreated by ultrasonic wave, and copper film was deposited on the surface of the wood veneer by magnetron sputtering to prepare “environmentally friendly” copper-plated wood-based composite materials. The microstructure and hydrophobic properties of Cu-coated wood-based composites were characterized and studied. With the increase in coating time, the diffraction peak intensity of wood cellulose gradually decreased, and the diffraction peaks of Cu (111), Cu (200), and Cu (220) of metallic copper appeared. Under the sputtering condition of a substrate temperature of 200 °C, the copper film deposit on the surface of the wood was uniform and densely arranged. The surface water contact angle reached 149.9°. Ultrasonic treatment increases the porous structure of wood, and the rough metal copper film interface was constructed on the surface of wood by magnetron sputtering to transform the surface wettability of the wood from hydrophilic to super-hydrophobic. The lotus leaf effect was realized on the wood surface.
Funder
Fundamental Research Funds for the Central Universities
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献