Distance and Visual Angle of Line-of-Sight of a Small Drone

Author:

Li Kai Way,Sun Chang,Li Nailiang

Abstract

Determining the distance of the line-of-sight (LOS) of a small drone is essential in both regulating drone operation and drone operator training considering public safety. A field experiment was conducted to determine the LOS distance and visual angle of a small drone. Human participants were requested to observe a drone in one of the predetermined locations in the air. They responded whether they could see and hear the drone using a five-point scale. It was found that auditory signals were insignificant in drone detection because most of the participants could not hear the drone while they could still see the drone in most of the test locations. Logistic regression analyses were conducted to predict the probability of catching the drone visually. Two models were built considering the “definitely yes” and “definitely or probably yes” criteria of visual detection. These models may be used to estimate the LOS distance and visual angle. Assuming a 50% probability of visual catching and the “definitely or probably yes” criterion, the distance and visual angle of the LOS for the Mavic Air drone without a protector were approximately 307 m and 0.065°, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Analysis of Society's Perspective on Urban Air Mobility;Journal of Aviation;2023-11-15

2. Flight Information Access When Operating a Small Drone;2023 4th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE);2023-08-25

3. Attitude Adjustment: Enhanced ATTI Mode for Remote Pilots;Engineering Psychology and Cognitive Ergonomics;2023

4. Mental workload assessments of aerial photography missions performed by novice unmanned aerial vehicle operators;Work;2022-12-27

5. Examining Distance in UAV Gesture Perception;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3