The Impacts of Bedding Strength Parameters on the Micro-Cracking Morphology in Laminated Shale under Uniaxial Compression

Author:

Dou Fakai,Wang JianguoORCID,Leung Chunfai

Abstract

The micro-cracking morphology in laminated shale formation plays a critical role in the enhancement of shale gas production, but the impacts of bedding strength parameters on micro-cracking morphology have not been well understood in laminated shale formation. This paper numerically investigated the initiation and evolution of micro-cracking morphology with bedding strength parameters in laminated shale under uniaxial compression. First, a two-dimensional particle flow model (PFC2D) was established for laminated shale. Then, the micro-mechanical parameters of this model were calibrated using stress-strain curves and final fracture morphology measured in the laboratory. Finally, the impacts of bedding strength parameters on the uniaxial compressive strength (UCS), crack type and the complexity of fracture network were analyzed quantitatively. Numerical simulation results indicate that the UCS of shale varies linearly with the bedding strength, especially when the shear failure of beddings is dominant. Matrix cracks mainly depend on bedding strength, while the generation of tensile cracks is determined by the shear-to-tensile strength ratio of beddings (STR). The shale with a higher STR is likely to produce a more complex fracture network. Therefore, the bedding strength parameters should be carefully evaluated when the initiation and evolution of micro-cracking morphology in laminated shale formation are simulated.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3