An Innovative Huffman Forest-Based Method to Detected Railroad Station Anomalies

Author:

Wang YuanORCID,Li Xiaopeng

Abstract

Detecting railroad station anomalies is a critical task prior to segmentation and making optimization decisions for each cluster. Three types of anomalies (local clustered, axis paralleled, and surrounded by normal instances) caused by the specialty of railroad operations bring the existing methods non-trivial challenges in detecting them accurately and efficiently. To tackle this limitation of existing methods, this paper proposes a novel anomaly detection method named Huffman Anomaly Detection Forest (HuffForest) to detect station anomalies, which leverages Huffman encoding to measure abnormalities in certain railroad scenarios with high accuracy. The proposed method establishes a Huffman forest by constructing trees from the perspective of data points and subsequently computes anomaly scores of instances considering both local and global information. A sampling-based version is also developed to improve scalability for large datasets. Taking advantage of the encoding mechanism, the proposed method can effectively recognize the underlying patterns of railroad stations and detect outliers in various complicated scenarios where the conventional methods are not reliable. Experiment results on both synthesized and public benchmarks are demonstrated to show the advances of the proposed method compared to the state-of-the-art isolation forest (iForest) and local outlier factor (LOF) methods on detection accuracy with an acceptable computational complexity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3