Green Communication in Internet of Things: A Hybrid Bio-Inspired Intelligent Approach

Author:

Kumar Manoj,Kumar SushilORCID,Kashyap Pankaj KumarORCID,Aggarwal GeetikaORCID,Rathore Rajkumar Singh,Kaiwartya OmprakashORCID,Lloret JaimeORCID

Abstract

Clustering is a promising technique for optimizing energy consumption in sensor-enabled Internet of Things (IoT) networks. Uneven distribution of cluster heads (CHs) across the network, repeatedly choosing the same IoT nodes as CHs and identifying cluster heads in the communication range of other CHs are the major problems leading to higher energy consumption in IoT networks. In this paper, using fuzzy logic, bio-inspired chicken swarm optimization (CSO) and a genetic algorithm, an optimal cluster formation is presented as a Hybrid Intelligent Optimization Algorithm (HIOA) to minimize overall energy consumption in an IoT network. In HIOA, the key idea for formation of IoT nodes as clusters depends on finding chromosomes having a minimum value fitness function with relevant network parameters. The fitness function includes minimization of inter- and intra-cluster distance to reduce the interface and minimum energy consumption over communication per round. The hierarchical order classification of CSO utilizes the crossover and mutation operation of the genetic approach to increase the population diversity that ultimately solves the uneven distribution of CHs and turnout to be balanced network load. The proposed HIOA algorithm is simulated over MATLAB2019A and its performance over CSO parameters is analyzed, and it is found that the best fitness value of the proposed algorithm HIOA is obtained though setting up the parameters popsize=60, number of rooster Nr=0.3, number of hen’s Nh=0.6 and swarm updating frequency θ=10. Further, comparative results proved that HIOA is more effective than traditional bio-inspired algorithms in terms of node death percentage, average residual energy and network lifetime by 12%, 19% and 23%.

Funder

This research was funded by Jawaharlal Nehru University, New Delhi, India, and partially supported by Cardiff Metropolitan University, UK.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3