Integrated SMRT Technology with UMI RNA-Seq Reveals the Hub Genes in Stamen Petalody in Camellia oleifera

Author:

Li HuieORCID,Hu Yang,Gao Chao,Guo Qiqiang,Deng Quanen,Nan Hong,Yang Lan,Wei Hongli,Qiu Jie,Yang Lu

Abstract

Male sterility caused by stamen petalody is a key factor for a low fruit set rate and a low yield of Camellia oleifera but can serve as a useful genetic tool because it eliminates the need for artificial emasculation. However, its molecular regulation mechanism still remains unclear. In this study, transcriptome was sequenced and analyzed on two types of bud materials, stamen petalody mutants and normal materials, at six stages of stamen development based on integrated single-molecule real-time (SMRT) technology with unique molecular identifiers (UMI) and RNA-seq technology to identify the hub genes responsible for stamen petalody in C. oleifera. The results show that a large number of alternative splicing events were identified in the transcriptome. A co-expression network analysis of MADSs and all the differentially expressed genes between the mutant stamens and the normal materials showed that four MADS transcription factor genes, CoSEP3.1, CoAGL6, CoSEP3.2, and CoAP3, were predicted to be the hub genes responsible for stamen petalody. Among these four, the expression patterns of CoAGL6 and CoSEP3.2 were consistently high in the mutant samples, but relatively low in the normal samples at six stages, while the patterns of CoSEP3.1 and CoAP3 were initially low in mutants and then were upregulated during development but remained relatively high in the normal materials. Furthermore, the genes with high connectivity to the hub genes showed significantly different expression patterns between the mutant stamens and the normal materials at different stages. qRT-PCR results showed a similar expression pattern of the hub genes in the RNA-seq. These results lay a solid foundation for the directive breeding of C. oleifera varieties and provide references for the genetic breeding of ornamental Camellia varieties.

Funder

National Natural Science Foundation of China

Science and Technology Planning Projects of Guizhou

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3