Brownian Motion Simulation for Estimating Chloride Diffusivity of Cement Paste

Author:

Zhang Congyan1,Li Xiang1,Chen Feng2,Wang Xudong1,Zheng Jianjun3

Affiliation:

1. Yuanpei College, Shaoxing University, Shaoxing 312000, China

2. School of Architecture and Engineering, Zhejiang Industry Polytechnic College, Shaoxing 312000, China

3. School of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

Chloride ion diffusion properties are important factors that affect the durability of cementitious materials. Researchers have conducted much exploration in this field, both experimentally and theoretically. Numerical simulation techniques have been greatly improved as theoretical methods and testing techniques have been updated. Researchers have modeled cement particles mostly as circular shapes, simulated the diffusion of chloride ions, and derived chloride ion diffusion coefficients in two-dimensional models. In this paper, a three-dimensional random walk method based on Brownian motion is employed to evaluate the chloride ion diffusivity of cement paste with the use of numerical simulation techniques. Unlike previous simplified two-dimensional or three-dimensional models with restricted walks, this is a true three-dimensional simulation technique that can visually represent the cement hydration process and the diffusion behavior of chloride ions in cement paste. During the simulation, the cement particles were reduced to spheres, which were randomly distributed in a simulation cell with periodic boundary conditions. Brownian particles were then dropped into the cell and permanently captured if their initial position in the gel fell. Otherwise, a sphere tangential to the nearest cement particle was constructed, with the initial position as the center. Then, the Brownian particles randomly jumped to the surface of this sphere. The process was repeated to derive the average arrival time. In addition, the diffusion coefficient of chloride ions was deduced. The effectiveness of the method was also tentatively confirmed by the experimental data.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Zhejiang province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3