Proportioning Factors of Alkali-Activated Materials and Interaction Relationship Revealed by Response Surface Modeling

Author:

Zhao Jun1,Wang Aiguo1,Lyu Bangcheng12,Liu Kaiwei1,Chu Yingjie12,Ma Rui1,Xu Haiyan1ORCID,Jing Yan1,Sun Daosheng1

Affiliation:

1. Anhui Province Engineering Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230601, China

2. School of Materials Science & Engineering, Southeast University, Nanjing 211189, China

Abstract

Alkali-activated fly-ash–slag blending materials (AA-FASMs) are gradually being studied and applied more because of their good performance. There are many factors affecting the alkali-activated system, and the effect of single-factor variation on the performance of AA-FASM has been mostly reported; however, there is a lack of unified understanding of the mechanical properties and microstructure of AA-FASM under curing conditions and multiple-factor interaction. Therefore, this study investigated the compressive strength development and reaction products of alkali-activated AA-FASM under three curing conditions including seal (S), dry (D) and water saturation (W). Based on the response surface model, the relationship between the interaction of slag content (WSG), activator modulus (M) and activator dosage (RA) on its strength was established. The results showed that the maximum compressive strength of AA-FASM after 28 days of sealed curing was about 59 MPa, while the strengths of dry- and water-saturation-cured specimens decreased by 9.8% and 13.7%, respectively. The seal-cured samples also had the smallest mass change rate and linear shrinkage and the most compact pore structure. Due to the adverse effects from a too-high or too-low modulus and dosage of the activators, the shapes of upward convex, slope and inclined convex were under the interaction of WSG/M, WSG/RA and M/RA, respectively. The correlation coefficient R2 > 0.95 and p-value < 0.05 indicated that the proposed model could be used to predict strength development given the complex factors. Optimal proportioning and curing conditions were found to be WSG = 50%, M = 1.4, RA = 50% and sealed curing.

Funder

National Natural Science Foundation of China

Key Research and Development Projects in Anhui Province

Cultivation Project of Scientific Research Reserve of Anhui Jianzhu University

Excellent Scientific Research and Innovation Team of Universities in Anhui Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3