The Microzone Structure Regulation of Diamond/Cu-B Composites for High Thermal Conductivity: Combining Experiments and First-Principles Calculations

Author:

Xie Zhongnan123,Xiao Wei123ORCID,Guo Hong123,Xue Boyu123ORCID,Yang Hui123ORCID,Zhang Ximin123,Huang Shuhui123,Sun Mingmei123,Xie Haofeng123

Affiliation:

1. State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd., Beijing 101400, China

2. GRIMAT Engineering Institute Co., Ltd., Beijing 101400, China

3. General Research Institute for Nonferrous Metals, Beijing 100088, China

Abstract

The interface microzone characteristics determine the thermophysical properties of diamond/Cu composites, while the mechanisms of interface formation and heat transport still need to be revealed. Here, diamond/Cu-B composites with different boron content were prepared by vacuum pressure infiltration. Diamond/Cu-B composites up to 694 W/(mK) were obtained. The interfacial carbides formation process and the enhancement mechanisms of interfacial heat conduction in diamond/Cu-B composites were studied by HRTEM and first-principles calculations. It is demonstrated that boron can diffuse toward the interface region with an energy barrier of 0.87 eV, and these elements are energetically favorable to form the B4C phase. The calculation of the phonon spectrum proves that the B4C phonon spectrum is distributed in the range of the copper and diamond phonon spectrum. The overlapping of phonon spectra and the dentate structure together enhance the interface phononic transport efficiency, thereby improving the interface thermal conductance.

Funder

Ministry of Science and Technology of the People’s Republic of China

Youth Fund Project of GRINM

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3