Is the Microfiltration Process Suitable as a Method of Removing Suspended Solids from Rainwater?

Author:

Fitobór KarolinaORCID,Quant Bernard

Abstract

Due to climate change and anthropogenic pressure, freshwater availability is declining in areas where it has not been noticeable so far. As a result, the demands for alternative sources of safe drinking water and effective methods of purification are growing. A solution worth considering is the treatment of rainwater by microfiltration. This study presents the results of selected analyses of rainwater runoff, collected from the roof surface of individual households equipped with the rainwater harvesting system. The method of rainwater management and research location (rural area) influenced the low content of suspended substances (TSS < 0.02 mg/L) and turbidity (< 4 NTU). Microfiltration allowed for the further removal of suspension particles with sizes larger than 0.45 μm and with efficiency greater than 60%. Granulometric analysis indicated that physical properties of suspended particles vary with the season and weather. During spring, particles with an average size of 500 μm predominated, while in autumn particles were much smaller (10 μm). However, Silt Density Index measurements confirmed that even a small amount of suspended solids can contribute to the fouling of membranes (SDI > 5). Therefore, rainwater cannot be purified by microfiltration without an appropriate pretreatment.

Funder

Gdansk University of Technology, Faculty of Civil and Environmental Engineering

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3