Valorization of Fine-Fraction CDW in Binary Pozzolanic CDW/Bamboo Leaf Ash Mixtures for the Elaboration of New Ternary Low-Carbon Cement

Author:

Villar-Hernández Javier1ORCID,Villar-Cociña Ernesto2ORCID,Savastano Holmer1ORCID,Rojas Moisés Frías3ORCID

Affiliation:

1. Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Sao Paulo 13635-900, SP, Brazil

2. Department of Physics, Central University of Las Villas, Santa Clara 54830, Cuba

3. Eduardo Torroja Institute (CSIC), c/Serrano Galvache, 4, 28033 Madrid, Spain

Abstract

This paper presents the characterization of a binary mixture of construction and demolition waste (CDW) and bamboo leaf ash (BLAsh) calcined at 600 °C (novel mixture) and the study of its pozzolanic behavior. Different dosages in a pozzolan/Ca(OH)2 system were employed. The aim is the valorization of fine-fraction CDW that achieves a more reactive binary mixture and allows an adequate use of CDW as waste, as CDW is a material of limited use due to its low pozzolanic activity. The pozzolanic behavior of the mixture was analyzed using the conductometric method, which measures the electrical conductivity in the CDW + BLAsh/CH solution versus reaction time. With the application of a kinetic–diffusive mathematical model, the kinetic parameters of the pozzolanic reaction were quantified. This allowed a quantitative evaluation of the pozzolanic activity based on the values of these parameters. To validate these results, other experimental techniques were used: X-ray diffraction, thermogravimetry and scanning electron microscopy. Also, mechanical compressive strength assays were carried out. The results show an increase in the pozzolanic activity of binary mixes of CDW + BLAsh for all the dosages used in comparison to the pozzolanic activity of CDW alone. The quantitative assessment (kinetic parameters) shows that the binary mixture CDW50 + BLAsh50 is the most reactive (reaction rate constant of 7.88 × 10−1 h−1) and is superior to the mixtures CDW60 + BLAsh40 and CDW70 + BLAs30. Compressive strength tests show higher strength values for the ternary mixes (OPC + CDW + BLAsh) compared to the binary mixes (OPC + CDW). In view of the results, the binary blend of pozzolans CDW + BLAsh is suitable for the manufacture of future low-carbon ternary cements.

Funder

FAPESP

CAPES, Coordination for the Improvement of Higher Education Personnel-Brazil-Finance

CPG/FZEA

CNPq

University of Sao Paulo

Spanish Ministry of Science and Innovation, the Spanish National Research Agency (AEI) and the European Regional Development Fund

Publisher

MDPI AG

Reference72 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3