Combined Remediation towards Cadmium–Arsenic-Contaminated Soil via Phytoremediation and Stabilization

Author:

Zhang Chenxu123,Wu Jiamei123,Cao Jian123

Affiliation:

1. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

2. Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha 410083, China

3. Hunan International Joint Research Center for Efficient and Clean Utilization of Critical Metal Mineral Resources, Central South University, Changsha 410083, China

Abstract

Using a phytoremediation technique for soil remediation usually takes many years, which increases the risk that heavy metals spread into the environment during the project period. Currently, the combined remediation technique (phytoremediation and stabilization) is known as the solution to reduce this risk. In this study, the combined remediation of cadmium–arsenic-contaminated soil via phytoremediation and stabilization was studied. The pot experiment was carried out using modified fly ash (MFA) and solid waste material (steel slag (SS): pyrolusite (PY): ferrous sulfide (FS) = 1:2:8) as stabilization materials and Bidens pilosa as the accumulative plant. The characteristics of B. pilosa, including its water content, biomass, root length, plant height, and heavy metal content, were obtained after harvesting, and the reduction rate of the bioavailability of Cd and As and their physico-chemical properties, including the pH, Eh, and Ec values of the soil, were also measured. The remediation effect was evaluated according to the above indexes, and the mechanism of combined remediation was studied through the FTIR, XRD, and XPS analyses. These experiments have shown that adding an appropriate amount of MFA can enhance the absorption of heavy metals by plants in the soil and reduce the bioavailability of heavy metals in contaminated soil. In addition, the mechanism study revealed that Cd2+/Cd(OH)+ was easily adsorbed on Si-OH and MnOOH, while AsO43− was more easily adsorbed on Fe-OH and Al-OH.

Funder

the National key Research and development program

the Science and Technology Innovation Program of Hunan Province

the Natural Science Foundation of China

the Comprehensive Survey Project for Ecological Restoration in Dongting Lake Wetland

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3