The Optimal Transportation Option in an Underground Hard Coal Mine: A Multi-Criteria Cost Analysis

Author:

Bąk Patrycja1ORCID,Turek Marian Czesław2,Bednarczyk Łukasz3,Jonek-Kowalska Izabela4ORCID

Affiliation:

1. Faculty of Civil Engineering and Resource Management, AGH University of Krakow, 30-059 Krakow, Poland

2. The Central Mining Institute, 40-166 Katowice, Poland

3. Polska Grupa Górnicza SA, 40-166 Katowice, Poland

4. Faculty of Organization and Management, Silesian University of Technology, 41-800 Zabrze, Poland

Abstract

The issue of transport in underground hard coal mines is very rarely described in the literature. The financial aspects of this issue are even less often analyzed. Publications in this area focus on technical issues and the safety of mining crews. More attention is paid to transport in open-pit mines. The above premises and practical needs imply the need to conduct economic analyses of transport systems in underground hard coal mines. This paper is a scientific communication, which presents the concept of a multi-criteria cost analysis as a tool to support the selection of the optimal transportation option in an underground hard coal mine. Considerations in this area have not been carried out in the relevant literature, and the problem of selecting a transportation option is a complex and necessary issue in the practice of underground mines with extensive mine workings. The methodology presented includes five cost criteria (costs of carrying out the transportation task; route expansion costs; rolling stock maintenance costs; depreciation costs; and additional personnel costs). The simultaneous application of criteria relating to utility properties in addition to cost criteria makes it possible to adopt a specific technical and organizational model of the transportation system based on the indication of the optimal solution, resulting from the mathematical construction of functions of objectives relating to utility and cost. The optimal variant of the designed system and configuration of the material transportation system in underground workings takes into consideration the following: (1) seven utility criteria (KU1—transportation task completion time; KU2—compatibility of transportation systems; KU3—continuous connectivity; KU4—co-use with other transportation tasks; KU5—safety; KU6—inconvenience; KU7—operation under overplanning conditions) and (2) five cost criteria (KK1—costs of implementing the transportation task; KK2—costs of route expansion; KK3—rolling stock maintenance costs; KK4—depreciation costs; KK5—additional personnel costs). Based on the aforementioned criteria, two objective functions are built for each option: utility and cost. They present divergent goals; therefore, they are non-cooperative functions. Both utility and costs strive for the maximum. In the developed methodology, an ideal point is usually a fictitious solution representing a set of maximum values among all the achievable values in a set of solutions, but it is impossible to achieve this simultaneously based on all the criteria. This point illustrates the maximum utility and lowest cost among the alternatives considered, which is obviously impossible for any of the variants to meet at the same time, although it indicates the possibilities of the technique and the range of costs. For the developed method, a so-called “PND” nadir point is also determined, representing the least-preferred level of achievement of all goals simultaneously, determined from the set of optimal points in the Pareto sense. The originality of the conceptual considerations undertaken stems from: filling the gap in the economic methodology of complex transportation systems evaluation; embedding considerations in the trend concerning complex transportation systems of underground mines; and focusing considerations on the pre-investment phase, making it possible to optimize costs before expenditures are incurred.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3