Phytoremediation Characterization of Heavy Metals by Some Native Plants at Anthropogenic Polluted Sites in Jeddah, Saudi Arabia

Author:

Alghamdi Sameera A.1,El-Zohri Manal12ORCID

Affiliation:

1. Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt

Abstract

Many anthropogenic activities have lately resulted in soil adulteration by heavy metals (HMs). The assessment of native plant species that grow in the polluted environments is of great importance for using these plants in phytoremediation techniques. This study was conducted in three industrial regions in Jeddah city, Wadi Marik, Bahra, and Khumrah, to assess the HM contamination level in them. This study also evaluated the phytoremediation ability of nine plant species collected from the studied regions. Soil physicochemical properties of the studied sites were investigated. Nine HMs, aluminum (Al), nickel (Ni), zinc (Zn), cobalt (Co), iron (Fe), lead (Pb), manganese (Mn), chromium (Cr), and barium (Ba), have been evaluated in the collected soil, plant shoots, and root samples. Total thiol concentration in the plant shoots and roots was determined. The phytoremediation indexes, such as bioaccumulation factor (BCF) and translocation factor (TF), were estimated. The results show that the soil of all the explored sites was sandy and slightly alkaline. It was found that Ni, Pb, and Cr were above the international permissible limit in all soil samples. The Wadi Marik region recorded the highest HM concentration compared to the other sites. In the Bahra region, Fe, Zn, Co, and Mn in all collected soil samples were below internationally permissible levels. In Khumrah, the highest concentration of Zn was found in the soil sample collected around F. indica plants, while Fe, Co, and Mn in all collected soil samples were below the international permissible limit. Depending on the BCF calculations, most of the investigated species showed phytostabilization ability for most of the studied HMs. Of them, E. indica, T. nubica, and P. divisum recorded the highest BCF values that ranged from 16.1 to 3.4. The BCF values of the studied HMs reduced in the order of Cr > Zn > Mn > Co > Ba > Fe > Al > Pb. Phytoextration of Co and Cr could be achieved by P. oleracea and F. indica, which showed TF values that reached 6.7 and 6.1, respectively. These plants showed high potential for phytoremediation and can be suggested as protective belts close to the contaminated regions of Jeddah.

Publisher

MDPI AG

Reference84 articles.

1. Suman, J., Uhlik, O., Viktorova, J., and Macek, T. (2018). Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment?. Front. Plant Sci., 9.

2. Heavy metal pollution and human biotoxic effects;Duruibe;Int. J. Phys. Sci.,2007

3. Sharma, S.K. (2015). Heavy metal pollution in water resources in China—Occurrence and public health implications. Heavy Metals in Water: Presence, Removal and Safety, Royal Society of Chemistry.

4. Chapter 6—Polyamines, metallothioneins, and phytochelatins—Natural defense of plants to mitigate heavy metals;Studies in Natural Products Chemistry,2021

5. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach;Bhat;Chemosphere,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3