The Recovery of Bioactive Compounds from Olive Pomace Using Green Extraction Processes

Author:

Stramarkou Marina1,Missirli Theodora-Venetia1ORCID,Kyriakopoulou Konstantina1ORCID,Papadaki Sofia1ORCID,Angelis-Dimakis Athanasios2ORCID,Krokida Magdalini1

Affiliation:

1. Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece

2. Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

Abstract

In this study, solid olive mill waste (SOMW) was used to obtain antioxidant compounds using solid–liquid extraction. The effect of different extraction methods, namely microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), Soxhlet, and conventional solvent extraction, on the yield, total phenolics, and total antioxidant activity of SOMW extracts was investigated. Untreated and dried SOMW were subjected to extraction with water and methanol. The antioxidant activity of the extracts was evaluated using the DPPH assay, while their total phenolic content was measured using the Folin–Ciocalteu method. For the characterisation of the extracts, HPLC-DAD analysis was performed. The results showed that the extraction yield was significantly influenced (p < 0.05) by the solvent used, the material treatment prior to extraction, the moisture content of SOMW samples, and the extraction time. The optimised parameters were water, as the extraction solvent, and MAE as the extraction technique (extraction temperature of 50 °C and time of 1 h). The evaluation of the antioxidant activity of the extracts indicated that phenolics were the dominant bioactive compounds. The extracts were found to be rich in several hydroxytyrosol derivatives. Therefore, SOMW can be a valuable resource for bioactive compounds using conventional and innovative extraction techniques.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3