Hydrometallurgical Process to Recover Cobalt from Spent Li-Ion Batteries

Author:

Djoudi Neila,Le Page Mostefa Marie,Muhr Hervé

Abstract

The growth of the lithium-ion battery industry requires a secure supply of raw materials and appropriate end-of-life management of batteries. In almost five years, global cobalt consumption has increased by nearly 30%, driven mainly by rechargeable batteries. Consequently, several risks have been identified for cobalt, in particular the growing demand for electric vehicles, which could exceed current production. Therefore, research into the recovery of this critical metal, from industrial or urban waste, is particularly important in the years to come. In this study, cobalt is recovered from a lithium-ion battery leachate in hydroxide form. The thermodynamic simulations performed with Visual Minteq showed that it was possible to recover 99.8% of cobalt (II) hydroxide at 25 °C. Based on these results, experiments were conducted to validate the hypotheses put forward and to compare the results obtained with the simulations performed. Experimentally, several operating parameters were studied to determine the optimal conditions for cobalt recovery, in terms of yield, filterability, and selectivity. Results obtained in a batch reactor allowed the determination of the temperature conditions to be applied in continuous reactor. The cobalt (II) hydroxide precipitation in continuous reactor was carried out under different pH conditions. It was then possible to determine the optimal conditions for cobalt recovery in terms of yield and filterability. Results showed that working at pH 9 would effectively meet the desired criteria. Indeed, cobalt recovery is close to 100% and filtration flow rate is three times higher. Results obtained allow a better understanding of cobalt (II) hydroxide precipitation.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3