Abstract
In this paper, we discuss the impact of the rank of coal, petrographic composition, and physico-chemical coal properties on the release and composition of syngas during coal gasification in a CO2 atmosphere. This study used humic coals (parabituminous to anthracite) and lithotypes (bright coal and dull coal). Gasification was performed at temperatures between 600 and 1100 °C. It was found that the gas release depends on the temperature and rank of coal, and the reactivity increases with the increasing rank of coal. It was shown that the coal lithotype does not affect the gas composition or the process. Until 900 °C, the most intense processes were observed for higher rank coals. Above 1000 °C, the most reactive coals had a vitrinite reflectance of 0.5–0.6%. It was confirmed that the gasification of low-rank coal should be performed at temperatures above 1000 °C, and the reactivity of coal depends on the petrographic composition and physico-chemical features. It was shown that inertinite has a negative impact on the H2 content; at 950 °C, the increase in H2 depends on the rank of coal and vitrinite content. The physicochemical properties of coal rely on the content of maceral groups and the rank of coal. An improved understanding these relationships will allow the optimal selection of coal for gasification.
Subject
Management, Monitoring, Policy and Law,Nature and Landscape Conservation
Reference70 articles.
1. Summary for Policymakers
2. World Energy Outlook 2019—Analysis-IEA n.d.https://www.iea.org/reports/world-energy-outlook-2019
3. Energy Security of Poland and Coal Supply: Price Analysis
4. Coal gasification with CO2 as Gasification agent—As a method for improving emission factors and process efficiency;Chmielniak;Polityka Energet.,2014
5. Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献