Hybrid Domestic Hot Water System Performance in Industrial Hall

Author:

Dudkiewicz EdytaORCID,Fidorów-Kaprawy NataliaORCID

Abstract

The renewable and waste heat sources implemented for the preparation of domestic hot water (DHW) allow for energy conservation and environment protection along with resource savings and economic benefits. The solutions, including non-conventional sources, are especially demanded in large halls in which energy and water consumption are crucial for maintenance costs. In this article, energy analysis of a DHW preparation system for workers’ hygienic purposes in a industrial hall was performed. The DHW preparation system consisted of three sources: a flue gases heat exchanger as the waste heat source, solar collectors as the renewable heat source and a gas boiler as the conventional source. In the analysis, data of a variable-temperature supply of water and hourly water consumption data from the measurements in the industrial hall, located in Poland, were applied. The results for all of the 8760 h of one year were examined. The analysis outcomes show that implementation of non-conventional sources can supply 81.4% of energy needed for DHW preparation, avoiding a lot of running costs; just 18.6% of heat demand had to be obtained from a gas boiler. The analysis also confirms that the system may operate correctly when the appropriate device size is applied, along with a proper control strategy that avoids overheating water and uses alternative sources.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation

Reference49 articles.

1. Development of an Industrial Environmental Index to Assess the Sustainability of Industrial Solvent-Based Processes;Chris;Resources,2019

2. Financing Building Energy Performance Improvement in Poland, 2016 https://insights.ovid.com/crossref?an=00129804-200411000-00002

3. Trends of European research and development in district heating technologies

4. Rynek Inwestycyjny Nieruchomości Komercyjnych w Europie Środkowej w Drugim Kwartale 2015 r

5. Assessment of the Space Heating and Domestic Hot Water Market in Europe—Open Data and Results

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3