Combining Energy Management Indicators and Life Cycle Assessment Indicators to Promote Sustainability in a Paper Production Plant

Author:

Espinel Blanco Edwin,Valencia Ochoa GuillermoORCID,Duarte Forero JorgeORCID

Abstract

This paper presents the application of an energy characterization method based on the ISO 50001 standard in a dry paper production plant. This plant operates using electricity, gas, and coal as energy sources. The last two energy sources are used to produce the steam and hot air used in the paper drying process. Through energy characterization, indicators such as energy baseline and consumption indicators were calculated for the plant, with which improvement opportunities were identified. These improvement opportunities were used as case studies for each energy source used and were based on the actual state of the plant. 2011 Midpoint+ ILCD method data was selected from the Ecoinvent database, using OpenLCA 1.7.0 for the energy assessment. The impact categories analyzed in this study were ecotoxicity, eutrophication of rivers and seas, climate change, and human toxicity. As a result of this work, it was found that energy-saving was possible by adjusting the production rate to a load factor of 77%, which implies a gas consumption of 1.6 kWh/kg and a value in the climate change category of 88.5 kg of CO2 equivalent. In addition, some technological improvement opportunities were economical and environmentally evaluated as a result of the sustainable improvement strategy implemented with energy management and life cycle assessment. The study of these technological opportunities showed that in order to achieve a sustainable industrial process, it is important to take into account energy, economic, and environmental criteria in the continuous improvement of the paper production process. In addition, it is of vital importance to analyze alternatives for technological change, which have a greater impact than operational alternatives according to energy, environmental and economic criteria.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation

Reference46 articles.

1. Convención Marco sobre el Cambio Climático—PARIS;Osorio Zapata;J. Chem. Inf. Model.,2015

2. Industrial Development Report 2011 Industrial Energy Efficiency for Sustainable Wealth Creation,2011

3. Ntc-Iso 50001,2011

4. Global Air Quality and Pollution

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3