Characteristics and Nitrogen Removal Performance Optimization of Aerobic Denitrifying Bacteria Bacillus cereus J1 under Ammonium and Nitrate-Nitrogen Conditions

Author:

Cao Ying1,Jin Yi1ORCID,Lu Yao1,Wang Yanling12,Zhao Tianyu1,Chen Pengfei1ORCID,Huang Shaobin1,Zhang Yongqing1

Affiliation:

1. School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China

2. School of Civil Engineering Architecture, East China Jiao Tong University, Nanchang 330013, China

Abstract

A novel aerobic denitrifying bacterium Bacillus cereus J1 was isolated from a sewage treatment plant. Its characteristics under two distinct nitrogen sources were systematically investigated. According to the results of whole-genome sequencing, we inferred that strain J1 removes nitrogen through processes such as aerobic denitrification, dissimilatory nitrate reduction to ammonium, and ammonium assimilation. The degradation process of COD and total inorganic nitrogen (TIN) correlated to the zero-order degradation kinetics equation, and the maximum removal rate of NO3−−N reached 3.17 mg/L/h and that of NH4+−N was 3.79 mg/L/h. Utilizing single-factor experiments and response surface methodology, the optimal conditions for nitrate removal were determined as a shaking speed of 115 rpm, COD/nitrogen mass (C/N ratio) of 12.25, and salinity of 3.44 g/L, with the C/N ratio exerting the most significant influence. Similarly, for the maximum ammonium removal, the ideal conditions involved a shaking speed of 133 rpm, C/N ratio of 29, and salinity of 13.30 g/L, with the shaking speed exerting the most significant influence. These findings demonstrate that large amounts of ammonium and nitrate can be quickly removed with the help of Bacillus cereus J1, indicating that strain J1 may be applied to alleviate nitrogen pollution in aquatic environments.

Funder

Research Project of the Guangxi Provincial Department of Science and Technology

National Natural Science Foundations of China

Science and Technology Innovation Program from Water Resources of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3