Temporal and Spatial Variations of Chlorophyll a Concentration and Eutrophication Assessment (1987–2018) of Donghu Lake in Wuhan Using Landsat Images

Author:

Yang XujieORCID,Jiang Yan,Deng Xuwei,Zheng Ying,Yue Zhiying

Abstract

Chlorophyll a (Chl-a) concentration, which reflects the biomass and primary productivity of phytoplankton in water, is an important water quality parameter to assess the eutrophication status of water. The band combinations shown in the images of Donghu Lake (Wuhan City, China) captured by Landsat satellites from 1987 to 2018 were analyzed. The (B4 − B3)/(B4 + B3) [(Green − Red)/(Green + Red)] band combination was employed to construct linear, power, exponential, logarithmic and cubic polynomial models based on Chl-a values in Donghu Lake in April 2016. The correlation coefficient (R2), the relative error (RE) and the root mean square error (RMSE) of the cubic model were 0.859, 9.175% and 11.194 μg/L, respectively and those of the validation model were 0.831, 6.509% and 19.846μg/L, respectively. Remote sensing images from 1987 to 2018 were applied to the model and the spatial distribution of Chl-a concentrations in spring and autumn of these years was obtained. At the same time, the eutrophication status of Donghu Lake was monitored and evaluated based on the comprehensive trophic level index (TLI). The results showed that the TLI (∑) of Donghu Lake in April 2016 was 63.49 and the historical data on Chl-a concentration showed that Donghu Lake had been eutrophic. The distribution of Chl-a concentration in Donghu Lake was affected by factors such as construction of bridges and dams, commercial activities and enclosure culture in the lake. The overall distribution of Chl-a concentration in each sub-lake was higher than that in the main lake region and Chl-a concentration was highest in summer, followed by spring, autumn and winter. Based on the data of three long-term (2005–2018) monitoring points in Donghu Lake, the matching patterns between meteorological data and Chl-a concentration were analyzed. It revealed that the Chl-a concentration was relatively high in warmer years or rainy years. The long-term measured data also verified the accuracy of the cubic model for Chl-a concentration. The R2, RE and RMSE of the validation model were 0.641, 2.518% and 22.606 μg/L, respectively, which indicated that it was feasible to use Landsat images to retrieve long-term Chl-a concentrations. Based on longitudinal remote sensing data from 1987 to 2018, long-term and large-scale dynamic monitoring of Chl-a concentrations in Donghu Lake was carried out in this study, providing reference and guidance for lake water quality management in the future.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3