The Development of Sustainable Polyoxymethylene (POM)-Based Composites by the Introduction of Natural Fillers and Melt Blending with Poly(lactic acid)-PLA

Author:

Soćko Anna12,Andrzejewski Jacek1ORCID

Affiliation:

1. Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Street, 61-138 Poznan, Poland

2. Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Street, 60-965 Poznan, Poland

Abstract

The conducted study was focused on the development of a new type of technical blend reinforced with natural fillers. The study was divided into two parts, where, in the first stage of the research, unmodified POM was reinforced with different types of natural fillers: cellulose, wood flour, and husk particles. In order to select the type of filler intended for further modification, the mechanical characteristics were assessed. The 20% wood flour (WF) filler system was selected as the reinforcement. The second stage of research involved the use of a combination of polyoxymethylene POM and poly(lactic acid) PLA. The POM/PLA blend (ratio 50/50%) was modified with an elastomeric compound (EBA) and chain extender as the compatibilized reactive (CE). The microscopic analysis revealed that for the POM/PLA system, the filler–matrix interface is characterized by better wettability, which might suggest higher adhesion. The mechanical performance revealed that for POM/PLA-based composites, the properties were very close to the results for POM-WF composites; however, there is still a significant difference in thermal resistance in favor of POM-based materials. The increase in thermomechanical properties for POM/PLA composites occurs after heat treatment. The increasing crystallinity of the PLA phase allows for a significant increase in the heat deflection temperature (HDT), even above 125 °C.

Funder

Ministry of Education and Science in Poland

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3