Entropy-Aware Time-Varying Graph Neural Networks with Generalized Temporal Hawkes Process: Dynamic Link Prediction in the Presence of Node Addition and Deletion

Author:

Najafi Bahareh12ORCID,Parsaeefard Saeedeh3,Leon-Garcia Alberto2ORCID

Affiliation:

1. Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z2, Canada

2. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada

3. Apple Inc., San Francisco, CA 95014, USA

Abstract

This paper addresses the problem of learning temporal graph representations, which capture the changing nature of complex evolving networks. Existing approaches mainly focus on adding new nodes and edges to capture dynamic graph structures. However, to achieve more accurate representation of graph evolution, we consider both the addition and deletion of nodes and edges as events. These events occur at irregular time scales and are modeled using temporal point processes. Our goal is to learn the conditional intensity function of the temporal point process to investigate the influence of deletion events on node representation learning for link-level prediction. We incorporate network entropy, a measure of node and edge significance, to capture the effect of node deletion and edge removal in our framework. Additionally, we leveraged the characteristics of a generalized temporal Hawkes process, which considers the inhibitory effects of events where past occurrences can reduce future intensity. This framework enables dynamic representation learning by effectively modeling both addition and deletion events in the temporal graph. To evaluate our approach, we utilize autonomous system graphs, a family of inhomogeneous sparse graphs with instances of node and edge additions and deletions, in a link prediction task. By integrating these enhancements into our framework, we improve the accuracy of dynamic link prediction and enable better understanding of the dynamic evolution of complex networks.

Funder

Alberto Leon-Garcia’s University of Toronto operating grant

Publisher

MDPI AG

Subject

Artificial Intelligence,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3