Explainable Artificial Intelligence Using Expressive Boolean Formulas

Author:

Rosenberg Gili1,Brubaker John Kyle1ORCID,Schuetz Martin J. A.12ORCID,Salton Grant123ORCID,Zhu Zhihuai1,Zhu Elton Yechao4ORCID,Kadıoğlu Serdar5,Borujeni Sima E.4,Katzgraber Helmut G.1ORCID

Affiliation:

1. Amazon Quantum Solutions Lab, Seattle, WA 98170, USA

2. AWS Center for Quantum Computing, Pasadena, CA 91125, USA

3. Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125, USA

4. Fidelity Center for Applied Technology, FMR LLC, Boston, MA 02210, USA

5. AI Center of Excellence, FMR LLC, Boston, MA 02210, USA

Abstract

We propose and implement an interpretable machine learning classification model for Explainable AI (XAI) based on expressive Boolean formulas. Potential applications include credit scoring and diagnosis of medical conditions. The Boolean formula defines a rule with tunable complexity (or interpretability) according to which input data are classified. Such a formula can include any operator that can be applied to one or more Boolean variables, thus providing higher expressivity compared to more rigid rule- and tree-based approaches. The classifier is trained using native local optimization techniques, efficiently searching the space of feasible formulas. Shallow rules can be determined by fast Integer Linear Programming (ILP) or Quadratic Unconstrained Binary Optimization (QUBO) solvers, potentially powered by special-purpose hardware or quantum devices. We combine the expressivity and efficiency of the native local optimizer with the fast operation of these devices by executing non-local moves that optimize over the subtrees of the full Boolean formula. We provide extensive numerical benchmarking results featuring several baselines on well-known public datasets. Based on the results, we find that the native local rule classifier is generally competitive with the other classifiers. The addition of non-local moves achieves similar results with fewer iterations. Therefore, using specialized or quantum hardware could lead to a significant speedup through the rapid proposal of non-local moves.

Funder

FMR LLC and Amazon Web Services, Inc

Publisher

MDPI AG

Subject

Artificial Intelligence,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3