Reconstruction-Based Adversarial Attack Detection in Vision-Based Autonomous Driving Systems

Author:

Hussain Manzoor1ORCID,Hong Jang-Eui1ORCID

Affiliation:

1. Software Intelligence Engineering Lab, Department of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea

Abstract

The perception system is a safety-critical component that directly impacts the overall safety of autonomous driving systems (ADSs). It is imperative to ensure the robustness of the deep-learning model used in the perception system. However, studies have shown that these models are highly vulnerable to the adversarial perturbation of input data. The existing works mainly focused on studying the impact of these adversarial attacks on classification rather than regression models. Therefore, this paper first introduces two generalized methods for perturbation-based attacks: (1) We used naturally occurring noises to create perturbations in the input data. (2) We introduce a modified square, HopSkipJump, and decision-based/boundary attack to attack the regression models used in ADSs. Then, we propose a deep-autoencoder-based adversarial attack detector. In addition to offline evaluation metrics (e.g., F1 score and precision, etc.), we introduce an online evaluation framework to evaluate the robustness of the model under attack. The framework considers the reconstruction loss of the deep autoencoder that validates the robustness of the models under attack in an end-to-end fashion at runtime. Our experimental results showed that the proposed adversarial attack detector could detect square, HopSkipJump, and decision-based/boundary attacks with a true positive rate (TPR) of 93%.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Artificial Intelligence,Engineering (miscellaneous)

Reference80 articles.

1. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., and Zhang, J. (2016). End to End Learning for Self-Driving Cars. arXiv.

2. Goodfellow, I.J., Shlens, J., and Szegedy, C. (2015, January 7–9). Explaining and Harnessing Adversarial Examples. Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA.

3. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2014, January 14–16). Intriguing Properties of Neural Networks. Proceedings of the 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada.

4. A Review of Adversarial Attack and Defense for Classification Methods;Li;Am. Stat.,2022

5. An End-to-End Convolutional Network for Joint Detecting and Denoising Adversarial Perturbations in Vehicle Classification;Liu;Comput. Vis. Media,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3