Machine Learning Method for Changepoint Detection in Short Time Series Data

Author:

Smejkalová Veronika1ORCID,Šomplák Radovan1ORCID,Rosecký Martin2,Šramková Kristína3

Affiliation:

1. Faculty of Mechanical Engineering, Institute of Process Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic

2. Czech Math, a.s., Šumavská 416/15, 602 00 Brno, Czech Republic

3. Faculty of Mechanical Engineering, Institute of Mathematics, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic

Abstract

Analysis of data is crucial in waste management to improve effective planning from both short- and long-term perspectives. Real-world data often presents anomalies, but in the waste management sector, anomaly detection is seldom performed. The main goal and contribution of this paper is a proposal of a complex machine learning framework for changepoint detection in a large number of short time series from waste management. In such a case, it is not possible to use only an expert-based approach due to the time-consuming nature of this process and subjectivity. The proposed framework consists of two steps: (1) outlier detection via outlier test for trend-adjusted data, and (2) changepoints are identified via comparison of linear model parameters. In order to use the proposed method, it is necessary to have a sufficient number of experts’ assessments of the presence of anomalies in time series. The proposed framework is demonstrated on waste management data from the Czech Republic. It is observed that certain waste categories in specific regions frequently exhibit changepoints. On the micro-regional level, approximately 31.1% of time series contain at least one outlier and 16.4% exhibit changepoints. Certain groups of waste are more prone to the occurrence of anomalies. The results indicate that even in the case of aggregated data, anomalies are not rare, and their presence should always be checked.

Funder

TACR

Ministry of the Environment of the Czech Republic

Centre of Environmental Research: Waste management, circular economy and environmental security

Publisher

MDPI AG

Subject

Artificial Intelligence,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3