Resistance of Injection Molded Wood-Polypropylene Composites against Basidiomycetes According to EN 15534-1: New Insights on the Test Procedure, Structural Alterations, and Impact of Wood Source

Author:

Krause Kim ChristianORCID,Brischke Christian,Koddenberg TimORCID,Buschalsky Andreas,Militz Holger,Krause AndreasORCID

Abstract

In this study, we investigated injection molded wood-polypropylene composites based on various wood sources and their decay resistance against white rot (Trametes versicolor) and brown rot (Coniophora puteana) in a laboratory test according to EN 15534-1:2014. The manufactured composites consisted of poplar (Populus spp.), willow (Salix spp.), European beech (Fagus sylvatica L.), Norway spruce (Picea abies (L.) H. Karst.), and a commercial wood source (Arbocel® C100), respectively. All formulations were compounded on a co-rotating twin screw extruder and subsequently injection molded to wood–PP specimens with a wood content of 60% or 70% by weight. It was found that the test procedure had a significant effect on the mechanical properties. Loss in mechanical properties was primarily caused by moisture and less by fungal decay. Moisture caused a loss in the modulus of rupture and modulus of elasticity of 34 to 45% and 29 to 73%, respectively. Mean mass and wood mass losses were up to a maximum of 3.7% and 5.3%, respectively. The high resistance against fungal decay was generally attributed to the encapsulation of wood by the polymer matrix caused by sample preparation, and enhanced by reduced moisture uptake during the preconditioning procedure. Notable differences with respect to the wood particle source and decay fungi were also observed. Structural characterization confirmed the decay pattern of the fungi such as void cavities close the surface and the deposition of calcium oxalates.

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3