Abstract
With the recent advancement in wearable computing, sensor technologies, and data processing approaches, it is possible to develop smart clothing that integrates sensors into garments. The main objective of this study was to develop the method of automatic recognition of sedentary behavior related to cardiovascular risk based on quantitative measurement of physical activity. The solution is based on the designed prototype of the smart shirt equipped with a processor, wearable sensors, power supply and telemedical interface. The data derived from wearable sensors were used to create feature vector that consisted of the estimation of the user-specific relative intensity and the variance of filtered accelerometer data. The method was validated using an experimental protocol which was designed to be safe for the elderly and was based on clinically validated short physical performance battery (SPPB) test tasks. To obtain the recognition model six classifiers were examined and compared including Linear Discriminant Analysis, Support Vector Machines, K-Nearest Neighbors, Naive Bayes, Binary Decision Trees and Artificial Neural Networks. The classification models were able to identify the sedentary behavior with an accuracy of 95.00% ± 2.11%. Experimental results suggested that high accuracy can be obtained by estimating sedentary behavior pattern using the smart shirt and machine learning approach. The main advantage of the developed method to continuously monitor patient activities in a free-living environment and could potentially be used for early detection of increased cardiovascular risk.
Funder
AGH University of Science and Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献