Soft Sensor Design via Switching Observers

Author:

Koumboulis Fotis N.1ORCID,Fragkoulis Dimitrios G.2ORCID,Kouvakas Nikolaos D.1ORCID,Feidopiasti Aikaterini2

Affiliation:

1. Department of Digital Industry Technologies, School of Science, National and Kapodistrian University of Athens, Euripus Campus, 34400 Euboea, Greece

2. Core Department, National and Kapodistrian University of Athens, Euripus Campus, 34400 Euboea, Greece

Abstract

The goal of the paper is the design of soft sensors for single input single output (SISO) nonlinear processes. This goal is of essential importance for process monitoring, fault detection and fault isolation. The observer-based technique, being a fruitful direction in soft sensor design, is followed to develop soft sensors for nonlinear processes with known dynamics and unknown physical parameters. A new and general approach, based on the identified I/O linear approximant system descriptions, around prespecified operating points, and a bank of switching linear observers, will be developed. The system property of the I/O reconstructability of the state space linear approximant of a nonlinear model is presented. The design of each observer is based on the I/O measurements and structural characteristics of the nonlinear process. Observer-oriented target areas are introduced, and the respective dense web principle is formulated. The design is completed by the design of a data-driven rule-based system, providing stepwise switching among the observers of the bank. The number of observers of the bank is equal to the number of the linear approximants of the nonlinear process model and is equal to the number of the respective target operating areas. The target operating areas are required to satisfy the dense web principle. The information provided by the soft sensor is the estimation of the non-measured variables of the process. The information used by the soft sensor is the identified I/O approximants of the process as well as the real time values of the measurement variables. The efficiency of the design scheme is illustrated through symbolic and numerical simulation results for a chemostat. The nonlinear model of the chemostat is initially approximated by a set of ten linear approximants. After, the I/O approximants are identified, the respective observers are designed and the target operating areas are determined, where several cases of the satisfaction of the dense web principle are investigated. The soft sensor is composed in terms of the designed observers. Simulation results illustrate the satisfactory performance of the designed soft sensor.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3