Improved Spread Spectrum Aloha Protocol and Beam-Hopping Approach for Return Channel in Satellite Internet of Things

Author:

Gou Liang1ORCID,Bian Dongming2,Dong Baogui3,Nie Yulei4

Affiliation:

1. Nanjing Smart Constellation Information Technology Co., Ltd., Nanjing 210007, China

2. College of Communication Engineering, Army Engineering University of PLA, Nanjing 210007, China

3. Changzhou Huawei Electronic Co., Ltd., Changzhou 213144, China

4. College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

This paper examines potential performances of the Spread Spectrum-based random access technique and proposes an Improved Spread Spectrum Aloha (ISSA) protocol for the return channel in satellite Internet of Things (IoT) based on the beam-hopping technique. The key design driver and detailed solution of ISSA protocol are presented in this work and it is shown that the proposed protocol achieves high throughput and low collision probability. To match user/traffic distribution, delay requirement and channel condition with beam allocation better, a low-complexity heuristic beam scheduling algorithm and a more effective Maximum-Weighted Clique (MWC) algorithm have been proposed. The heuristic algorithm considers the user/traffic distribution, inter-beam interference, and fairness primarily. However, the MWC algorithm gives considerations not only on above factors, but also on delay requirement and channel condition (path loss and rain attenuation) to maximize system capacity. The beam angle and interference avoidance threshold are proposed to measure the inter-beam interference, and the link propagation loss and rain attenuation are considered meanwhile in the channel condition. In the MWC algorithm, we construct an auxiliary graph to find the maximum-weighted clique and derive the weighting approach to be applied in different application scenarios. The performance evaluation of our ISSA protocol compared with the SSA protocol is presented, which achieves a gain of 16.7%. The simulation of the ISSA protocol combined with round robin, heuristic, and MWC beam scheduling for the return link in beam-hopping satellite IoTs is also provided. The results indicate that the throughput in nonuniform user distribution is much lower than in the uniform case without the beam scheduling algorithm. Through the application of the scheduling algorithm, the throughput performance can approach the uniform distribution. Finally, the degree of user satisfaction with different scheduling approaches is presented, which validates the effectiveness of heuristic and MWC algorithms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3