Artificial Negative Polarity Thunderstorm Cell Modeling of Nearby Incomplete Upward Discharges’ Influence on Elements of Monitoring Systems for Air Transmission Lines

Author:

Lysov NikolayORCID,Temnikov Alexander,Chernensky Leonid,Orlov Alexander,Belova Olga,Kivshar Tatiana,Kovalev Dmitry,Voevodin Vadim

Abstract

The article represents results of a physical simulation of incomplete upward leader discharges induced on air transmission lines’ elements, using charged artificial thunderstorm cells of negative polarity. The influence of such discharges on closely located model sensors (both of rod and elongated types) of digital monitoring systems, as well as on the models of receiver-transmission systems of local data collection (antennas), was determined. Effect of heterogeneity of electromagnetic field caused by incomplete upward discharges on frequency specter of signals generated on sensors and antennas was estimated. Wavelet analysis was carried out to determine the basic frequency diapasons of such signals. Based on experimental data obtained, suppositions about the extent of influence of nearby incomplete leader discharges on the functioning of currently used systems of transmission lines’ monitoring were made.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference46 articles.

1. Real-Time Overhead Transmission-Line Monitoring for Dynamic Rating

2. Current Status and Development Trend of AC Transmission Line Parameter Measurement;Zhirui;Autom. Electr. Power Syst.,2017

3. Inspection and Monitoring Technologies of Transmission Lines with Remote Sensing;Hu,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3