Abstract
In recent years, as photovoltaic (PV) power generation has rapidly increased on a global scale, there is a growing need for a highly accurate power generation forecasting model that is easy to implement for a wide range of electric utilities. Against this background, this study proposes a PV power forecasting model based on the generalized additive model (GAM) and compares its forecasting accuracy with four popular machine learning methods: k-nearest neighbor, artificial neural networks, support vector regression, and random forest. The empirical analysis provides an intuitive interpretation of the multidimensional smooth trends estimated by the GAM as tensor product splines and confirms the validity of the proposed modeling structure. The effectiveness of GAM is particularly evident in trend completion for missing data, where it is able to flexibly express the tangled trend structure inherent in time series data, and thus has an advantage not only in interpretability but also in improving forecast accuracy.
Funder
Japan Society for the Promotion of Science
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献