Energy Efficiency Indicators for Water Pumping Systems in Multifamily Buildings

Author:

de Souza Danilo FerreiraORCID,da Guarda Emeli Lalesca Aparecida,Sauer Ildo LuisORCID,Tatizawa HédioORCID

Abstract

With the current concerns about sustainable development and energy consumption in buildings, water pumping systems have become essential for reducing energy consumption. This research aims to develop guidelines for the energy assessment of water pumping systems in multifamily buildings. The methodological procedures are: (i) definition of the efficiencies of electric motors; (ii) definition of pump efficiency levels; (iii) determination of energy consumption; and (iv) construction of the efficiency scale and guidelines for projects and assessments. The results obtained were that centrifugal pumps with 40% efficiency have higher energy consumption, regardless of the efficiency class of the electric motors, showing a 20% increase in electrical energy consumption. Lower efficiencies directly impact the energy efficiency rating of the water pumping system. Thus the 40% efficiency obtained energy efficiency rating “Very Low—VL” for all motor efficiency classes (between IE1 and IE5). At 60% efficiency, the energy efficiency level of the system was “Average—A”, gradually increasing to “Very High—VH”, as the energy consumption in the pumps decreased and the motors’ energy efficiency classes increased. It is concluded that designers and professionals in the area must consider the efficiency of the pumps, as they play a fundamental role in the classification of the system’s energy efficiency. It is also recommended to verify the energy efficiency of the water pumping system and implement design guidelines so that the pumping system achieves lower energy consumption, contributing to the building’s energy efficiency and sustainability.

Funder

Agência Nacional de Energia Elétrica

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3