Abstract
This paper presents the results of modeling, control system design and simulation verification of a hybrid-electric drive topology suitable for power flow control within unmanned aerial vehicles (UAVs). The hybrid power system is based on the internal combustion engine (ICE) driving a brushless DC (BLDC) generator supplying the common DC bus used for power distribution within the aircraft. The overall control system features proportional-integral-derivative (PID) feedback control of the ICE rotational speed using a Luenberger estimator for engine-generator set rotational speed estimation. The BLDC generator active rectifier voltage and current are controlled by proportional-integral (PI) feedback controllers, augmented by estimator-based feed-forward load compensators. The overall control system design has been based on damping optimum criterion, which yields straightforward analytical expressions for controller and estimator parameters. The robustness to key process parameters variations is investigated by means of root-locus methodology, and the effectiveness of the proposed hybrid power unit control system is verified by means of comprehensive computer simulations.
Funder
European Regional Development Fund
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献