Scalable Microgrid Process Model: The Results of an Off-Grid Household Experiment

Author:

Sysko-Romańczuk SylwiaORCID,Kluj Grzegorz,Hawrysz LilianaORCID,Rokicki ŁukaszORCID,Robak SylwesterORCID

Abstract

The security of national energy systems as well as the transition to a low-carbon future are two hot topics of discussion in the international political arena. Research on the stability of centralized energy systems is currently focused on distributed generation. Developing a scalable microgrid model enabling its massive adoption is one of the safest and feasible ways to solve such problem. The paper aims to fill an existing gap regarding the operation model of microgrids that is a barrier for the large-scale integration of those in the conventional grid network. In the proposed approach the authors identified key processes to be considered when operating microgrids, in the conditions shown through an experimental (simulation) campaign. A three-phase research was performed: (1) systematic literature review to explore the management models of a stand-alone microgrid design and management; (2) a household experiment; and (3) a computer simulation of energy balance for a selected household. We identified eight key processes constituting a scalable microgrid: five core processes, two supporting processes, and one management process. Subsequently, we developed a map of these processes obtaining a microgrid process model for massive adoption. The model of processes can be considered as a repeatable pattern of conduct in the creation and maintenance of microgrids, which their future owners can follow. To support our literature findings, we performed an experiment and a computer simulation of three sub-processes of the (re)design of the infrastructure process: (1) wind turbine selection, (2) photovoltaic power plant selection, and (3) energy-storage selection. Results confirm conditional stability of the analyzed microgrid and the need for cyclical simulation exercises until unconditional stability is achieved. In terms of sustainability, to keep the microgrid permanently in a positive energy balance will require the implementation of all key processes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3