Carbon Footprint-Energy Detection for Desalination Small Plant Adaptation Response

Author:

Ghani Latifah AbdulORCID,Ali Nora’aini,Nazaran Ilyanni Syazira,Hanafiah Marlia M.,Yatim Norhafiza Ilyana

Abstract

The Life Cycle Assessment (LCA) system, which can be used as a decision support tool for managing environmental sustainability, includes carbon footprint assessment as one of the available methodologies. In this study, a carbon footprint assessment was used to investigate seawater production systems of a desalination plant in Senok, Kelantan, Malaysia. Three stages of the desalination plant processing system were investigated and the inventory database was developed using the relevant model framework. Subsequently, measurements and interpretations were performed on several key indicators such as greenhouse gases, energy efficiency, acidic gases, smog, and toxic gases. Overall, the results of the study indicate that the Reverse Osmosis (RO) technology that is used in the desalination plant in the study area is one of the best options to meet the demands of the environmental sustainability agenda (SDGs). This is due to the lower carbon dioxide (CO2) emission, of about 3.5 × 10−2 kg of CO2 eq per m3/year, that was recorded for the entire operation of the system. However, several factors that influence important errors in carbon footprint decisions, such as the lack of EIA reporting data and the literature on carbon footprint in the Malaysian scenario, in addition to direct and indirect carbon input calculations, need to be identified in more detail in future research.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3