Application of Gene Expression Programming (GEP) in Modeling Hydrocarbon Recovery in WAG Injection Process

Author:

Afzali Shokufe,Mohamadi-Baghmolaei Mohamad,Zendehboudi SohrabORCID

Abstract

Water alternating gas (WAG) injection has been successfully applied as a tertiary recovery technique. Forecasting WAG flooding performance using fast and robust models is of great importance to attain a better understanding of the process, optimize the operational conditions, and avoid high-cost blind tests in laboratory or pilot scales. In this study, we introduce a novel correlation to determine the performance of the near-miscible WAG flooding in strongly water-wet sandstones. We conduct dimensional analysis with Buckingham’s π theorem technique to generate dimensionless numbers using eight key parameters. Seven dimensionless numbers are employed as the input variables of the desired correlation for predicting the recovery factor of a near-miscible WAG injection. A verified mathematical model is used to generate the required training and testing data for the development of the correlation using a gene expression programming (GEP) algorithm. The provided data points are then separated into two subsets: training (67%) to develop the model and testing (33%) to assess the models’ capability. Conducting error analysis, statistical measures and graphical illustrations are provided to assess the effectiveness of the introduced model. The statistical analysis shows that the developed GEP-based correlation can generate target data with high precision such that the training phase leads to R2 = 92.85% and MSE = 1.38 × 10−3 and R2 = 91.93% and MSE = 4.30 × 10−3 are attained for the testing phase. The relative importance of the input dimensionless groups is also determined. According to the sensitivity analysis, decreasing the oil–water capillary number results in a significant reduction in RF in all cycles. Increasing the magnitudes of oil to gas viscosity ratio and oil to water viscosity ratio lowers the RF of each cycle. It is found that oil to gas viscosity ratio has a higher impact on RF value compared to oil to water viscosity ratio due to a higher viscosity gap between the gas and oil phases. It is expected that the GEP, as a fast and reliable tool, will be useful to find vital variables including relative permeability in complex transport phenomena such as three-phase flow in porous media.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3