Influencing Factors Evaluation of Machine Learning-Based Energy Consumption Prediction

Author:

Khan Prince WaqasORCID,Kim Yongjun,Byun Yung-CheolORCID,Lee Sang-Joon

Abstract

Modern computing resources, including machine learning-based techniques, are used to maintain stability between the demand and supply of electricity. Machine learning is widely used for the prediction of energy consumption. The researchers present several artificial intelligence and machine learning-based methods to improve the prediction accuracy of energy consumption. However, the discrepancy between actual energy consumption and predicted energy consumption is still challenging. Various factors, including changes in weather, holidays, and weekends, affect prediction accuracy. This article analyses the overall prediction using error curve learning and a hybrid model. Actual energy consumption data of Jeju island, South Korea, has been used for experimental purposes. We have used a hybrid ML model consisting of Catboost, Xgboost, and Multi-layer perceptron for the prediction. Then we analyze the factors that affect the week-ahead (WA) and 48 h prediction results. Mean error on weekdays is recorded as 2.78%, for weekends 2.79%, and for special days it is recorded as 4.28%. We took into consideration significant predicting errors and looked into the reasons behind those errors. Furthermore, we analyzed whether factors, such as a sudden change in temperature and typhoons, had an effect on energy consumption. Finally, the authors have considered the other factors, such as public holidays and weekends, to analyze the significant errors in the prediction. This study can be helpful for policymakers to make policies according to the error-causing factors.

Funder

Korea Institute for Advancement of Technology

Jeju National University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the Relationships between Variables and Their Applications in the Energy Saving Field;Energies;2024-07-30

2. Predicting Energy Consumption of Battery-Operated Electric Vehicles: A Comparative Performance Assessment;2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM);2023-12-18

3. Analysis of Influencing Factors by Machine Learning to Predict Energy Consumption of Educational Institutes;Lecture Notes in Civil Engineering;2023-12-12

4. Forecasting Energy Consumption in the Chimborazo Province, Ecuador, Using Random Forest and XGBoost Algorithms;2023 1st International Conference on Advanced Engineering and Technologies (ICONNIC);2023-10-14

5. Three-dimensional temporal-spatial attention for tropical cyclone forecast;Fourth International Conference on Computer Science and Communication Technology (ICCSCT 2023);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3