Abstract
Modern computing resources, including machine learning-based techniques, are used to maintain stability between the demand and supply of electricity. Machine learning is widely used for the prediction of energy consumption. The researchers present several artificial intelligence and machine learning-based methods to improve the prediction accuracy of energy consumption. However, the discrepancy between actual energy consumption and predicted energy consumption is still challenging. Various factors, including changes in weather, holidays, and weekends, affect prediction accuracy. This article analyses the overall prediction using error curve learning and a hybrid model. Actual energy consumption data of Jeju island, South Korea, has been used for experimental purposes. We have used a hybrid ML model consisting of Catboost, Xgboost, and Multi-layer perceptron for the prediction. Then we analyze the factors that affect the week-ahead (WA) and 48 h prediction results. Mean error on weekdays is recorded as 2.78%, for weekends 2.79%, and for special days it is recorded as 4.28%. We took into consideration significant predicting errors and looked into the reasons behind those errors. Furthermore, we analyzed whether factors, such as a sudden change in temperature and typhoons, had an effect on energy consumption. Finally, the authors have considered the other factors, such as public holidays and weekends, to analyze the significant errors in the prediction. This study can be helpful for policymakers to make policies according to the error-causing factors.
Funder
Korea Institute for Advancement of Technology
Jeju National University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献