A Tightly Integrated Navigation Method of SINS, DVL, and PS Based on RIMM in the Complex Underwater Environment

Author:

Yang Huibao,Gao Xiujing,Huang Hongwu,Li Bangshuai,Jiang Jiehong

Abstract

Navigation and positioning of autonomous underwater vehicles (AUVs) in the complex and changeable marine environment are crucial and challenging. For the positioning of AUVs, the integrated navigation of the strap-down inertial navigation system (SINS), Doppler velocity log (DVL), and pressure sensor (PS) has a common application. Nevertheless, in the complex underwater environment, the DVL performance is affected by the current and complex terrain environments. The outliers in sensor observations also have a substantial adverse effect on the AUV positioning accuracy. To address these issues, in this paper, a novel tightly integrated navigation model of the SINS, DVL, and PS is established. In contrast to the traditional SINS, DVL, and PS tightly integrated navigation methods, the proposed method in this paper is based on the velocity variation of the DVL beam by applying the DVL bottom-track and water-track models. Furthermore, a new robust interacting multiple models (RIMM) information fusion algorithm is proposed. In this algorithm, DVL beam anomaly is detected, and the Markov transfer probability matrix is accordingly updated to enable quick model matching. By simulating the motion of the AUV in a complex underwater environment, we also compare the performance of the traditional loosely integrated navigation (TLIN) model, the tightly integrated navigation (TTIN) model, and the IMM algorithm. The simulation results show that because of the PS, the velocity and height in the up-change amplitude of the four algorithms are small. Compared with the TLIN algorithm in terms of maximum deviation of latitude and longitude, the RIMM algorithm also improves the accuracy by 39.1243 m and 26.4364 m, respectively. Furthermore, compared with the TTIN algorithm, the RIMM algorithm improves latitude and longitude accuracy by 1.8913 m and 11.8274 m, respectively. A comparison with IMM also shows that RIMM improves the accuracy of latitude and longitude by 1.1506 m and 7.2301 m, respectively. The results confirm that the proposed algorithm suppresses the observed noise and outliers of DVL and further achieves quick conversion between different DVL models while making full use of the effective information of the DVL beams. The proposed method also improves the navigation accuracy of AUVs in complex underwater environments.

Funder

Fujian Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3