Sediment Transport near Ship Shoal for Coastal Restoration in the Louisiana Shelf: A Model Estimate of the Year 2017–2018

Author:

Liu Haoran,Xu KehuiORCID,Ou YandaORCID,Bales Robert,Zang Zhengchen,Xue Z. George

Abstract

Ship Shoal has been a high-priority target sand resource for dredging activities to restore the eroding barrier islands in LA, USA. The Caminada and Raccoon Island pits were dredged on and near Ship Shoal, which resulted in a mixed texture environment with the redistribution of cohesive mud and noncohesive sand. However, there is very limited knowledge about the source and transport process of suspended muddy sediments near Ship Shoal. The objective of this study is to apply the Regional Ocean Modeling System (ROMS) model to quantify the sediment sources and relative contribution of fluvial sediments with the estuary and shelf sediments delivered to Ship Shoal. The model results showed that suspended mud from the Atchafalaya River can transport and bypass Ship Shoal. Only a minimal amount of suspended mud from the Atchafalaya River can be delivered to Ship Shoal in a one-year time scale. Additionally, suspended mud from the inner shelf could be transported cross Ship Shoal and generate a thin mud layer, which is also considered as the primary sediment source infilling the dredge pits near Ship Shoal. Two hurricanes and one tropical storm during the year 2017–2018 changed the direction of the sediment transport flux near Ship Shoal and contributed to the pit infilling (less than 10% for this specific period). Our model also captured that the bottom sediment concentration in the Raccoon Island pit was relatively higher than the one in Caminada in the same period. Suspended mud sediment from the river, inner shelf, and bay can bypass or transport and deposit in the Caminada pit and Raccoon Island pit, which showed that the Caminada pit and Raccoon Island pits would not be considered as a renewable borrow area for future sand dredging activities for coastal restoration.

Funder

Bureau of Ocean Energy Management

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3