Integrating Climatic and Physical Information in a Bayesian Hierarchical Model of Extreme Daily Precipitation

Author:

Love CharlotteORCID,Skahill Brian,England JohnORCID,Karlovits GregoryORCID,Duren Angela,AghaKouchak Amir

Abstract

Extreme precipitation events are often localized, difficult to predict, and available records are often sparse. Improving frequency analysis and describing the associated uncertainty are essential for regional hazard preparedness and infrastructure design. Our primary goal is to evaluate incorporating Bayesian model averaging (BMA) within a spatial Bayesian hierarchical model framework (BHM). We compare results from two distinct regions in Oregon with different dominating rainfall generation mechanisms, and a region of overlap. We consider several Bayesian hierarchical models from relatively simple (location covariates only) to rather complex (location, elevation, and monthly mean climatic variables). We assess model predictive performance and selection through the application of leave-one-out cross-validation; however, other model assessment methods were also considered. We additionally conduct a comprehensive assessment of the posterior inclusion probability of covariates provided by the BMA portion of the model and the contribution of the spatial random effects term, which together characterize the pointwise spatial variation of each model’s generalized extreme value (GEV) distribution parameters within a BHM framework. Results indicate that while using BMA may improve analysis of extremes, model selection remains an important component of tuning model performance. The most complex model containing geographic and information was among the top performing models in western Oregon (with relatively wetter climate), while it performed among the worst in the eastern Oregon (with relatively drier climate). Based on our results from the region of overlap, site-specific predictive performance improves when the site and the model have a similar annual maxima climatology—winter storm dominated versus summer convective storm dominated. The results also indicate that regions with greater temperature variability may benefit from the inclusion of temperature information as a covariate. Overall, our results show that the BHM framework with BMA improves spatial analysis of extremes, especially when relevant (physical and/or climatic) covariates are used.

Funder

U.S. Army Corps of Engineers

National Science Foundation

US Nuclear Regulatory Commission

Army Research Office

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3