An Extended Model for Analyzing the Heat Transfer in the Skin–Microenvironment–Fabric System during Firefighting

Author:

Lei Ying,Wang Faming,Yang JieORCID

Abstract

This study proposed an extended multi–layer heat transfer model to simulate skin burns of firefighters during firefighting. The proposed model takes into account the effect of fabric movement frequencies, fabric movement amplitudes and human body movement speeds on the heat transfer between the skin and the heat source under low–level radiative exposure. The simulation performance was validated against the simulations in the published literature in terms of the heat transfer in the multi–layer fabric system, skin temperature and skin burns. The results indicated that the fabric periodic movement caused by human body movement decreased the time to skin burns and the skin temperature increased with increasing fabric movement amplitude. During firefighting, the time to 2nd degree burn was 33.3–35.2% shorter at medium human body movement speed than at low and high movement speeds. Furthermore, at low movement speeds, the time to 2nd degree burn was negatively associated with fabric movement amplitude, whereas it was delayed by 12.9–29.8% at the fabric movement amplitude of 2.5 mm at medium and high human body movement speeds. This research provides foundational knowledge for the development of a new generation of firefighters’ protective clothing (FPC) and the assessment of skin burns in firefighters.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3