Preparation of CaCO3/Al(OH)3 Composites via Heterogeneous Nucleation

Author:

Xu Yan,Bao Weijun,Ding Hao,Qu Jingkui

Abstract

As one of the most widely used inorganic fine powder fillers, calcium carbonate is cheap. However, considering its poor light transmittance, it is not suitable to be added to resin matrix composites that require high light transmittance. Aluminum hydroxide has good light transmission and flame retardancy, but it is more expensive than calcium carbonate. CaCO3/Al(OH)3 composites with a core-shell structure that showed a trend toward the performance of aluminum hydroxide not only improved the surface properties of CaCO3, but also increased the added value of CaCO3. In the present paper, CaCO3/Al(OH)3 composites were successfully prepared in sodium aluminate solution via heterogeneous nucleation. Four types of calcium sources, including calcite-type precipitated calcium carbonate, vaterite-type precipitated calcium carbonate, ground calcium carbonate with two different particle sizes as the precursors and supersaturated sodium aluminate solution as the substrate, have been deeply investigated in terms of their influence on the preparation of CaCO3/Al(OH)3 composites. Results showed that the calcium carbonate precursor greatly affected the formation of CaCO3/Al(OH)3 composites. Both the precipitated calcium carbonate and the small particle ground calcium carbonate are likely to undergo anti-causticization and a complexation reaction with it to generate 3CaO·Al2O3·6H2O and 3CaO·Al2O3·CaCO3·11H2O, which go against the coating of calcium carbonate with aluminum hydroxide. Within the experimental range, the use of ground calcium carbonate with a particle size of 400–500 mesh is more suitable as a precursor for the preparation of core-shell CaCO3/Al(OH)3 composites.

Funder

Key Research and Development Program of Guangxi, China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3