Study on Surface Integrity and Fatigue Properties of TC4 Titanium Alloy by Surface Ultrasonic Rolling

Author:

Zhu Xiaotong,Liu PengtaoORCID,Zhang Chi,Liang Hao,Hua Jun

Abstract

In this paper, the influence of a surface ultrasonic rolling process on the surface integrity of TC4 titanium alloy and its influence on the fatigue properties were studied. By comparing and analyzing the surface roughness, microhardness, residual stress, microstructure, and fatigue fracture, the surface strengthening and modification mechanism of TC4 titanium alloy is discussed. The results show that the surface roughness of titanium alloy is observably decreased after the suitable surface ultrasonic rolling process, and the maximum Ra value can be reduced to 0.052 μm. The axial residual stress on the specimen surface can be increased to −685 MPa. The hardening rate of the surface hardness of the sample was 35%. The residual compressive stress and hardness of the sample surface increased with the increase of static pressure. However, the increase of feed rate and rational speed was less. After surface ultrasonic rolling, the sample surface exhibited obvious grain refinement, the number of high-angle boundaries increased to include the formation of nano-equiaxed grains. The fatigue strength increased by 52% from 280 MPa to 425 MPa. Under 450 MPa, the fatigue life of samples with SUR 2 was the highest, at about 7.7 times that of the original samples. The surface integrity of titanium alloy samples after surface ultrasonic rolling treatment is greatly improved, which is the reason for the significant increase in fatigue life of the samples.

Funder

Aviation Science Foundation Project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3