Possible Mechanisms of Resistance Development to Photodynamic Therapy (PDT) In Vulvar Cancer Cells

Author:

Mossakowska Beata JoannaORCID,Fabisiewicz Anna,Tudek Barbara,Siedlecki Janusz Aleksander

Abstract

Photodynamic therapy (PDT) is a low-invasive treatment method that can be used to treat VIN patients. A photosensitizer (PS) applied to a patient is activated with use of the appropriate wavelength of light, which in an oxygen environment leads to the formation of a reactive oxygen species (ROS) that destroys the tumor. However, cells can protect themselves against these cytotoxic products by increasing their antioxidant mechanisms and repair capacity. Changes in the cytoskeleton may also influence resistance to PDT. Our results revealed that PDT-resistant cells changed the amount of ROS. Cells resistant to PDT A-431 exhibited a decreased ROS level and showed higher viability after oxidizing agent treatment. Resistant Cal-39 cells exhibited a decreased O2− level but increased other ROS. This provides protection from PDT but not from other oxidizing agents. Moreover, PDT leads to alterations in the cytoskeleton that may result in an epithelial-mesenchymal transition (EMT) or increased adhesion. Both EMT and cell adhesion may activate signaling pathways involved in survival. This means that resistance to PDT in vulvar cancer may be at least in part a result of changes in ROS level and alterations in the cytoskeleton.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference40 articles.

1. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions;Cancers,2017

2. Cell Death Pathways in Photodynamic Therapy of Cancer;Cancers,2011

3. Photodynamic Therapy (PDT): PDT Mechanisms;Clin. Endosc,2013

4. Metoda fotodynamicznego leczenia w dermatologii;Forum Dermatol.,2018

5. Photodynamic Therapy: Current Status and Future Directions;Med. Princ Pract,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3