Abstract
Phytochrome-interacting factors (PIFs) are transcription factors with the basic helix–loop–helix (bHLH) domain. As integration factors between different signal pathways, members of the PIF protein family regulate many aspects of plant growth and development, such as seed germination, photomorphogenesis, thermomorphogenesis, rhythm regulation, flowering response, stomatal development, and stress responses. Our previous studies have shown that the BpSPL2 gene may regulate plants’ adventitious root development through PIF genes. Within the Betula platyphylla genome, we identified eight PIF (BpPIFs) genes. We analysed and named them based on a phylogenetic tree, gene structures, and conserved motifs. Synteny analysis indicated that transposition or segmental duplication events played a minor role in the expansion of BpPIFs. The comparative syntenic analysis combined with phylogenetic analysis provided a deep insight into the phylogenetic relationships of BpPIF genes, suggesting that BpPIF proteins are closer to PtPIF than to AtPIF. The analysis of cis-acting elements in promoter regions of BpPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. In addition, we found that these promoters have the transcription factor of B. platyphylla SPL2 (BpSPL2) binding motif GTAC. Expression analysis demonstrated that BpPIF genes, especially BpPIF4, BpPIF9b, and BpPIF10, might be the potential target genes of BpSPL2 in the process of adventitious root formation. Besides providing a comprehensive understanding of the BpPIF family, we propose a hypothetical gene network regulatory model for adventitious root formation.
Funder
National Natural Science Foundation of China
the National Key Research and Development Program of China
the Heilongjiang Touyan Innovat (Tree Genetics and Breeding Innovation Team).
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献