Comprehensive Analysis of Betula platyphylla Suk. PIF Gene Family and Their Potential Functions in Growth and Development

Author:

Chen AihuaORCID,Huang Peng,Guo Shanshan,Liu Sige,Hu Xiaoqing,Liu Xuemei

Abstract

Phytochrome-interacting factors (PIFs) are transcription factors with the basic helix–loop–helix (bHLH) domain. As integration factors between different signal pathways, members of the PIF protein family regulate many aspects of plant growth and development, such as seed germination, photomorphogenesis, thermomorphogenesis, rhythm regulation, flowering response, stomatal development, and stress responses. Our previous studies have shown that the BpSPL2 gene may regulate plants’ adventitious root development through PIF genes. Within the Betula platyphylla genome, we identified eight PIF (BpPIFs) genes. We analysed and named them based on a phylogenetic tree, gene structures, and conserved motifs. Synteny analysis indicated that transposition or segmental duplication events played a minor role in the expansion of BpPIFs. The comparative syntenic analysis combined with phylogenetic analysis provided a deep insight into the phylogenetic relationships of BpPIF genes, suggesting that BpPIF proteins are closer to PtPIF than to AtPIF. The analysis of cis-acting elements in promoter regions of BpPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. In addition, we found that these promoters have the transcription factor of B. platyphylla SPL2 (BpSPL2) binding motif GTAC. Expression analysis demonstrated that BpPIF genes, especially BpPIF4, BpPIF9b, and BpPIF10, might be the potential target genes of BpSPL2 in the process of adventitious root formation. Besides providing a comprehensive understanding of the BpPIF family, we propose a hypothetical gene network regulatory model for adventitious root formation.

Funder

National Natural Science Foundation of China

the National Key Research and Development Program of China

the Heilongjiang Touyan Innovat (Tree Genetics and Breeding Innovation Team).

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3